Thermoelasticity of iron- and aluminum-bearing bridgmanite Gaurav Shukla¹, Matteo Cococcioni², and Renata M. Wentzcovitch^{1,3}

¹Department of Chemical Engineering and Material Sciences, University of Minnesota Twin Cities, Minneapolis, USA ²Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ³Minnesota Supercomputer Institute, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA

We report *ab initio* (LDA + U_{SC}) calculations of thermoelastic properties of iron (ferrous, Fe²⁺, and ferric, Fe³⁺) and aluminum Al-bearing bridgmanite (MgSiO₃ perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Results of aggregate elastic moduli and acoustic velocities for the Mg end-member (x=0) agree very well with the latest high-pressure and high-temperature experimental measurements. In the Fe²⁺-bearing system, pressure induced lateral displacement of Fe²⁺ reproduces the trend of changes in equation of state parameters observed in recent experimental study, which otherwise were attributed to high- to intermediate spin state crossover. In the case of Fe³⁺-bearing bridgmanite, the high-spin (S=5/2) to low-spin (S=1/2) crossover of Fe³⁺ in Si-site leads to a significant volume collapse and elastic anomalies across the spin crossover region. The presence of aluminum in Fe³⁺-bearing system suppresses the elastic anomalies otherwise present in the system. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe₂O₃ and Al₂O₃ in equal proportions or with Al₂O₃ in excess should be similar to that of (Mg,Fe²⁺)SiO₃ bridgmanite. However, excess of Fe₂O₃ should produce elastic anomalies in the crossover pressure region.