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Impact cratering is important in planetary body formation and evolution [1, 2].  The pressure and 

temperature conditions during impacts are classified using systems [3-6] that stem from 1) petrographic 

features and 2) the presence of high pressure mineral phases observed in impactites. Maskelynite, 

amorphous plagioclase ((Na1-x Cax)Al1+x Si2-x O8), is a key indicator of petrographic type S5 [6] (strongly 

shocked) and  forms between 25 and 45 GPa. However, the formation pressure of maskelynite differs 

substantially depending on the experimental technique producing it.  Shock experiments produce 

amorphization at > 10 GPa higher than static diamond anvil cell (DAC) experiments. We utilize a new 

technique, fast compression in combination with time-resolved powder diffraction, to study the effect of 

strain rate on plagioclase amorphization pressure. Anorthite and albite were compressed to 80 GPa at 

multiple rates from 0.05 GPa/s to 80 GPa/s, and we observed a decrease in amorphization pressure with 

increasing compression rate for strain rates of about 10-3 s-1. This decrease demonstrates negative strain rate 

sensitivity, which is likely caused by structural defects. Negative strain rate sensitivity implies that faster 

rates are more ductile and heterogeneous and slower rates are more brittle and homogeneous. Our results 

fit into the deformation framework proposed by Huffman and Reimold [7] and are consistent with the 

formation mechanism for maskelynite by “shear melting” proposed by Grady [8].    
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