Robert Liebermann Stony Brook University

Sound velocities in KAISi3O8-hollandite [liebermannite] vs. pressure A polycrystalline specimen of liebermannite [KAISi₃O₈-hollandite] was synthesized at 14.5 GPa and 1473K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: *I4/m*] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy [?] and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial splitcylinder apparatus using Al₂O₃ as a pressure marker. Finite strain analysis of the ultrasonic data yielded $K_{S0} = 145.0$ (11) GPa, $K_0' = 4.9(2)$, $G_0 = 92.3(3)$ GPa, G_0' = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to $V_{P0} = 8.4(1)$ km/s, $V_{S0} = 4.9(1)$ km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.