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High-pressure X-ray diffraction through diamond anvil cells in radial geometry (r-DAC), pioneered by - 

like almost anything related to diamond anvil cells – Bassett [1] and further developed mainly by Wenk 

[2-4] and co-workers  has become a standard tool to investigate the deformation behavior, rheological 

properties and strength of materials at the conditions of the Earth’s interior [5-7]  This class of 

experiments is important in the quest to find a geological interpretation for seismic profiles of the Earth 

and to quantify the large-scale convection of the Earth’s mantle, which in turn is linked to the driving 

force behind plate tectonics. The main criticism of initial work with r-DAC’s was that experiments were 

performed at room temperature and therefore were at best only qualitatively relevant for lower mantle 

processes. This criticism was initially addressed by two approaches:  1) an in situ single-sided laser 

heating set up [8] designed and implemented at the ALS, and 2) a resistively heated radial diffraction 

DAC [9] at DESY. Axial temperature gradients and limited maximal temperatures, respectively, are 

drawbacks of these two approaches. A double-sided in situ laser heating set-up based on the laser and 

pyrometry optics mounted on a rotational stage was proposed at HPCAT [10] but to the best of our 

knowledge never implemented. 

In this contribution, we present the implementation of a user friendly in-situ double-sided laser heating 

compatible with radial X-ray diffraction for texture, strength and rheology measurements at COMPRES 

supported beamline 12.2.2 of the Advanced Light Source (ALS) at Lawrence Berkeley Lab. The system 

builds on the existing axial set up [11]. Laser and imaging paths are redirected in the horizontal from a 

0°/180° direction to a 90°/270° setting. The 90° redirection involves the insertion of a small periscope 

mirror pair with an objective lens into the axial downstream beampath. This is fully motorized and can 

be achieved remotely. The 270° beampath on the other hand involves the removal of the upstream axial  

objective lens and the manual installation of a small rig carrying 2 IR mirrors and the objective lens. 

Installation and alignment is straight forward and can be accomplished in less than one hour. System 

response calibration is stable for months and is done with a calibrated W-lamp. For temperature 

measurement, we employ the peak scaling method [12]. This allows the establishment of 2-dimensional 

temperature maps and thus temperature gradients in quasi real time.  

Examples of in-situ measurements at high pressure and high temperatures will be presented.  
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