Dynamic Compression Studies at Pohang X-ray Free Electron Laser Facility (PAL-XFEL)

<u>Yongjae Lee</u>,^{1,6,*} Huijeong Hwang,¹ Eric Galtier,² Hyunchae Cynn,³ Intae Eom,⁴ Sae Hwan Chun,⁴ Yoonah Bang,¹ Jinhyuk Choi,¹ Taehyun Kim¹, Mihye Kong,¹ Soyeon Kwon,¹ Gilchan Hwang,¹ Hae Ja Lee,² Changkun Park,⁵ Jong-Ik Lee,⁵ Yongmoon Lee,⁶ Wenge Yang,⁶ Sang-Heon Dan Shim,⁷ Thomas Vogt,⁸ Sangsoo Kim,⁴ Jaeku Park,⁴ Sunam Kim,⁴ Daewoong Nam,⁴ Jae Hyuk Lee,⁴ Hyojung Hyun,⁴ Tae-Yeong Koo,⁴ Chi-Chang Kao,² Hanns-Peter Liermann,⁹ Stewart McWilliams,¹⁰ Toshimori Sekine,^{6,11}

¹Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea; ²Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States; ³Physics Division, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA; ⁴Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea; ⁵Korea Polar Research Institute, Incheon 21990, Republic of Korea; ⁶Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China; ⁷School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA; ⁸NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA; ⁹Photon Science, Deutsches Elektronen Synchrotron (DESY), Hamburg 22607, Germany; ¹⁰School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK; ¹¹Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

We have successfully commissioned dynamic compression program at the Pohang X-ray Free Electron Laser facility (PAL-XFEL) in Korea by utilizing instrumentations at XSS (X-ray Scattering and Spectroscopy) and NCI (Nano Crystallography and Coherent Imaging) beamlines. As the first experiment, a polycrystalline iron foil has been illuminated by an 800 nm wavelength uncompressed optical laser with ~6 mJ in 150 ps pulse length, focused onto a 100 μ m FWHM spot. The shock-compressed sample has then been probed by ca. 50 fs quasi-monochromatic (bandwidth 0.4%) X-ray pulse at an energy of 10 keV with 10¹¹ photons per pulse, focused to ca. 30 μ m diameter using a

CRL optics. The sample is positioned normal to the X-ray pulse at a distance of ca. 12 cm from a Rayonix mx225 detector to cover 20 angles up to ca. 65 degrees. Single-shot diffraction measurements were performed with ca. 100 ps. increment up to one nanosecond. In the follow-up beamtimes, we have optimized the dynamic compression setup by utilizing 12 keV, 25 fs, 30 μ m XFEL and 60 μ m optical laser and extended the measurement on iron to observe post-shock thermal effects. First time investigation on precompressed samples in DAC is also being commissioned in collaboration with Euro-XFEL program. We demonstrate that PAL-XFEL can provide a unique opportunity in probing ultrafast lattice dynamics with sufficient spatial and temporal resolution in intermediate and multi-dimensional pressure regime.