Femtosecond diffraction studies of phase transitions in Sodium Chloride under dynamic shock compression

Vinay Rastogi¹, Raymond F. Smith², Richard J. Briggs², Martin G. Gorman², Cynthia A. Bolme³, Connor Krill¹, Damian C. Swift², Hae Ja Lee⁴, Phil Heimann⁴, June K. Wicks¹

¹Hopkins Extreme Material Institute, Johns Hopkins University, MD, 21218, USA

²Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94500, USA.

³Los Alamos National Laboratory, Los Alamos, New Maxico, USA

⁴Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA

Sodium Chloride (NaCl) is of strong interest in high-pressure science, geoscience, and dynamic compression experiments (Nishiyama et al., 2003; Fritz et al., 1971, Dorogokupets et al., 2007). At room temperature, NaCl undergoes a phase transition from the B1 (Fm3m) rocksalt structure to the B2 (Pm3m) CsCl structure at around 25 GPa. This B1 \rightarrow B2 phase transition is exhibited by Oxides such as CaO and MgO at much higher pressures. In spite of the several experimental studies on NaCl, the B1 \rightarrow B2 and B2 \rightarrow liquid phase transition data under rapid compression is still limited. Here, we report the in-situ X-ray diffraction and velocimetry of NaCl single crystal (30 μ m-thick) under laser driven shock compression. Experiments were conducted at the Matter of Extreme Conditions end station of the LCLS X-ray laser at the SLAC National Laboratory. A laser shock is generated by focusing a 527 nm, quasi flat-top 20 ns pulse within a 250 and 500 μ m diameter on front surface of the target package, which consists of a polyimide ablator, NaCl sample, and LiF window. The sample is probed by 50-femtosecond X-ray pulse. A signature of melting around

62 GPa in NaCl crystal has been observed, giving insight to the behavior of solid and liquid phases

under shock compression on nanosecond timescales.

References

Nishiyama, Norimasa et al., "Determination of the phase boundary between the B1 and B2 phases in NaCl by in situ x-ray diffraction" *Phys. Rev. B* 68, 134109 (2003).

Fritz, J.N., "The Hugoniot equation of state of sodium chloride in the sodium chloride structure." *Accurate characterization of the High-pressure environment: Proceedings* 13, 201 (1971).

Dorogokupets, P.; Dewaele, A.; "Equations of state of MgO, Au, Pt, NaCL-B1 and Nacl-B2: Internally consistent high temperature pressure scales." *High Pressure Research*, 27, 431-446 (2007).